Solutions

NWERC 2010 Solutions to the problems	Problem A
	Problem H
	Problem C
	Problem E
	Problem B
The Jury	Problem F
	Problem J
lacobs University Bremen	Problem G
Success on versity element	Problem D
	Problem I

A - Fair Division

- Sort persons according to maximum contribution
- Tie-breaker: position in list
- ▶ for (i=0 ... N-1)
- contrib[i] = min(max[i] , price/(N-i))
- price -= contrib[i]
- Don't print a trailing space

Problem A

Problem H

Problem C

Problem E

Problem B

Problem F

Problem J

Problem G

Problem D

A - Fair Division

- Sort persons according to maximum contribution
- Tie-breaker: position in list
- ▶ for (i=0 ... N-1)
- contrib[i] = min(max[i] , price/(N-i))
- price -= contrib[i]
- Don't print a trailing space

Statistics: 119 submissions, 51 correct, first 27 minutes

Problem A

Problem H

Problem C

Problem E

Problem B

Problem F

Problem J

Problem G

Problem D

H - Stock Prices

While bid price larger than ask price, process deals	Solutions
Output prices or a dash if it doesn't exist	
	Problem A
	Problem H
	Problem C
	Problem E
	Problem B
	Problem F
	Problem J
	Problem G
	Problem D
	Problem I

event sponsor

H - Stock Prices

C - High Scores

Loop over starting with going left or right	Solutions
Loop over where to turn around	
Count the number of movies until you are done	Problem A
Count the number of moves until you are done	
	Problem C
	Problem E
	Problem B
	Problem F
	Problem J
	Problem G
	Problem D
	Problem I

C - High Scores

Loop over starting with <i>going left</i> or <i>right</i>	Solutions
Loop over where to turn around	Problem A
Count the number of moves until you are done	Problem A
	Problem H
	Problem C
	Problem E
	Problem B
	Problem F
	Problem J
Statistics: 192 submissions, 43 correct, first 34 minutes	Problem G
	Problem D
	Problem I

E - Rankings

Start with newrank[i] = oldrank[i]	Solutions
For a swap (i, j), increase/decrease newrank[i j]	
• Check consistency: if i and j swapped, newranks and	Problem A Problem H
oldranks must be in opposite order	Problem C
There are never question marks in the answer	Problem E
 Topological sorting also works 	Problem B
	Problem F
	Problem J
	Problem G
	Problem D
	Problem I

C 1 ...

E - Rankings

<pre>Start with newrank[i] = oldrank[i]</pre>	Solutions
For a swap (i, j) , increase/decrease newrank[i j]	
Check consistency: if i and j swapped, newranks and oldranks must be in opposite order	Problem A Problem H Problem C
There are never question marks in the answer	Problem E
Topological sorting also works	Problem B
	Problem F
	Problem J
	Problem G
	Problem D
Statistics: 77 submissions, 37 correct, first 65 minutes	Problem I

B - Free Goodies

•	Sort the goodies to Petra's valuations $O(n^2)$ dynamic programming:	Solutions
		Problem A
	best[n goodles taken][Jan took k]	Problem H
	Also $O(n \log n)$ greedy solution possible!	Problem C
		Problem E
		Problem B
		Problem F
		Problem J
		Problem G
		Problem D
		Problem I

B - Free Goodies

•	Sort the goodies to Petra's valuations $O(n^2)$ dynamic programming:	Solutions
	best[n goodies taken][Jan took k]	Problem A Problem H
	Also $O(n \log n)$ greedy solution possible!	Problem C
		Problem E
		Problem B
		Problem F
		Problem J
		Problem G
	Statistics: 25 submissions, 9 correct, first 135 minutes	Problem D
		Problem I

F - Risk

	Binary	search	on	the	weakest	link
--	--------	--------	----	-----	---------	------

- Use maximum flow algorithm to determine if answer is possible
- Graph vertices: source, sink, and 2 vertices for each land you control

Graph edges:

- source \rightarrow 1st land (cap=num. armies)
- 1st land \rightarrow 2nd land (if connected)
- ▶ 2nd land → sink (cap=needed armies)

Solutions

Problem A

Problem H

Problem C

Problem E

Problem B

Problem F

Problem J

Problem G

Problem D

F - Risk

Binary search on the weakest link	Solutions
Use maximum flow algorithm to determine if answer is possible	Problem A
Graph vertices: source, sink, and 2 vertices for each land you control	Problem C Problem E
 Graph edges: source → 1st land (cap=num. armies) 1st land → 2nd land (if connected) 2nd land → sink (cap=needed armies) 	Problem B Problem F Problem J Problem G Problem D Problem I

Solutions

Statistics: 18 submissions, 8 correct, first 159 minutes

J - Wormly

Note: legs $2 \dots L - 1$ don't really matter	Solutions
Greedily move first leg, then last leg, then bubbles	
Repeat until finished	Problem A Problem H
Watch out for overflow	Problem C
	Problem E
	Problem B
	Problem F
	Problem J
	Problem G
	Problem D
	Problem I

J - Wormly

Note: legs $2 \dots L - 1$ don't really matter	Solutions
Greedily move first leg, then last leg, then bubbles	
Repeat until finished	Problem A Problem H
Watch out for overflow	Problem C
	Problem E
	Problem B
	Problem F
	Problem J
	Problem G
Statistics: 102 submissions, 9 correct, first 161 minutes	Problem D
	Problem I

G - Selling Land

- Process rows one by one
- For each column c of row r, count the number of grass squares above (c, r)
- Process columns and keep a list of possible end squares
- This takes amortized time O(1) per square

Solutions

Problem A

Problem H

Problem C

Problem E

Problem B

Problem F

Problem J

Problem G

Problem D

G - Selling Land

- Process rows one by one
- For each column c of row r, count the number of grass squares above (c, r)
- Process columns and keep a list of possible end squares
- This takes amortized time O(1) per square

▶ Statistics: 21 submissions, ≥ 1 correct, first 254 minutes

Solutions

Problem A

Problem H

Problem C

Problem E

Problem B

Problem F

Problem J

Problem G

Problem D

D - Hill Driving

Drive through the landscape with constant speed	Solutions
 (derive for two segments with equations, then use induction) 	Problem A
 Binary search and check how much fuel is used Be careful: 	Problem H Problem C Problem E
 Don't gain fuel when going downhill, but go faster Don't exceed maximum speed 	Problem B Problem F
Linear search possible too	Problem J Problem G
	Problem D

D - Hill Driving

	Drive through the landscape with constant speed	Solutions
	(derive for two segments with equations, then use induction)	Problem A
•	Binary search and check how much fuel is used Be careful:	Problem H Problem C Problem E
	 Don't gain fuel when going downhill, but go faster Don't exceed maximum speed 	Problem B Problem F
	Linear search possible too	Problem J Problem G
		Problem D Problem I

Statistics: 28 submissions, ?? correct, first ?? minutes

event sponsor

I - Telephone Network

- All sets of requests are possible, so we can add dummy requests to get bipartite graph with deg(v) = 1 for all v
- Reduce this graph modulo 2ⁿ⁻¹ to get a bipartite graph with deg(v) = 2 for all v
- ► Split this graph in two graphs with all degrees 1 and you get two instances of the same problem with n' = n/2
- Solve recursively and construct solution

Solutions

Problem A

Problem H

Problem C

Problem E

Problem B

Problem F

Problem J

Problem G

Problem D

- I Telephone Network
 - All sets of requests are possible, so we can add dummy requests to get bipartite graph with deg(v) = 1 for all v
 - Reduce this graph modulo 2ⁿ⁻¹ to get a bipartite graph with deg(v) = 2 for all v
 - ► Split this graph in two graphs with all degrees 1 and you get two instances of the same problem with n' = n/2
 - Solve recursively and construct solution

Solutions

Problem A

Problem H

Problem C

Problem E

Problem B

Problem F

Problem J

Problem G

Problem D

Problem I

Statistics: 6 submissions, ?? correct, first ?? minutes

Solutions

- Problem A
- Problem H
- Problem C
- Problem E
- Problem B
- Problem F
- Problem J
- Problem G
- Problem D
- Problem I

event sponsor

The end