NWERC 2010 Solutions to the problems

Problem A

The Jury
Jacobs University Bremen

Problem F
Problem J
Problem G
Problem D
Problem I

A - Fair Division

- Sort persons according to maximum contribution
- Tie-breaker: position in list
- for ($\mathrm{i}=0$... $\mathrm{N}-1$)
- contrib[i] = min(max[i] , price/(N-i))
- price -= contrib[i]
- Don't print a trailing space

Problem A
Problem H
Problem C
Problem E
Problem B
Problem F
Problem J
Problem G
Problem D
Problem I

A - Fair Division

- Sort persons according to maximum contribution
- Tie-breaker: position in list
- for ($\mathrm{i}=0$... $\mathrm{N}-1$)
- contrib[i] = min(max[i] , price/(N-i))
- price -= contrib[i]
- Don't print a trailing space
- Statistics: 119 submissions, 51 correct, first 27 minutes

H - Stock Prices

- While bid price larger than ask price, process deals
- Output prices or a dash if it doesn't exist

Problem A
Problem H
Problem C
Problem E
Problem B
Problem F
Problem J
Problem G
Problem D
Problem I

H - Stock Prices

- While bid price larger than ask price, process deals
- Output prices or a dash if it doesn't exist

Problem A
Problem H
Problem C
Problem E
Problem B
Problem F

- Statistics: 112 submissions, 48 correct, first 40 minutes

C - High Scores

- Loop over starting with going left or right
- Loop over where to turn around
- Count the number of moves until you are done

C - High Scores

- Loop over starting with going left or right
- Loop over where to turn around
- Count the number of moves until you are done

Problem A
Problem H
Problem C
Problem E
Problem B
Problem F
Problem J

- Statistics: 192 submissions, 43 correct, first 34 minutes

E-Rankings

- Start with newrank[i] = oldrank[i]
- For a swap (i, j), increase/decrease newrank[ilj]
- Check consistency: if i and j swapped, newranks and oldranks must be in opposite order
- There are never question marks in the answer
- Topological sorting also works

Problem A
Problem H
Problem C
Problem E
Problem B
Problem F
Problem I
Problem G
Problem D
Problem I

E-Rankings

- Start with newrank[i] = oldrank[i]
- For a swap (i, j), increase/decrease newrank[ilj]
- Check consistency: if i and j swapped, newranks and oldranks must be in opposite order
- There are never question marks in the answer
- Topological sorting also works

Problem A
Problem H
Problem C
Problem E
Problem B
Problem F
Problem J
Problem G
Problem D

- Statistics: 77 submissions, 37 correct, first 65 minutes

B - Free Goodies

- Sort the goodies to Petra's valuations
- $O\left(n^{2}\right)$ dynamic programming:
- best[n goodies taken][Jan took k]
- Also $O(n \log n)$ greedy solution possible!

B - Free Goodies

- Sort the goodies to Petra's valuations
- $O\left(n^{2}\right)$ dynamic programming:
- best[n goodies taken][Jan took k]
- Also $O(n \log n)$ greedy solution possible!

Problem A
Problem H
Problem C
Problem E
Problem B
Problem F
Problem J
Problem G

- Statistics: 25 submissions, 9 correct, first 135 minutes

F - Risk

- Binary search on the weakest link
- Use maximum flow algorithm to determine if answer is possible
- Graph vertices: source, sink, and 2 vertices for each land you control
- Graph edges:
- source \rightarrow 1st land (cap=num. armies)
- 1st land $\rightarrow 2$ nd land (if connected)
- 2nd land \rightarrow sink (cap=needed armies)

Problem A
Problem H
Problem C
Problem E
Problem B
Problem F
Problem J
Problem G
Problem D
Problem I

F - Risk

- Binary search on the weakest link
- Use maximum flow algorithm to determine if answer is possible
- Graph vertices: source, sink, and 2 vertices for each land you control
- Graph edges:
- source \rightarrow 1st land (cap=num. armies)
- 1st land \rightarrow 2nd land (if connected)
- 2nd land \rightarrow sink (cap=needed armies)
- Statistics: 18 submissions, 8 correct, first 159 minutes

J - Wormly

- Note: legs $2 \ldots L-1$ don't really matter
- Greedily move first leg, then last leg, then bubbles
- Repeat until finished
- Watch out for overflow

J - Wormly

- Note: legs $2 \ldots$. $L-1$ don't really matter
- Greedily move first leg, then last leg, then bubbles
- Repeat until finished
- Watch out for overflow

Problem A
Problem H
Problem C
Problem E
Problem B
Problem F
Problem J
Problem G

- Statistics: 102 submissions, 9 correct, first 161 minutes

G - Selling Land

- Process rows one by one
- For each column c of row r, count the number of grass squares above (c, r)
- Process columns and keep a list of possible end squares
- This takes amortized time $O(1)$ per square

G - Selling Land

- Process rows one by one
- For each column c of row r, count the number of grass squares above (c, r)
- Process columns and keep a list of possible end squares
- This takes amortized time $O(1)$ per square
- Statistics: 21 submissions, ≥ 1 correct, first 254 minutes

D - Hill Driving

- Drive through the landscape with constant speed
- (derive for two segments with equations, then use induction)
- Binary search and check how much fuel is used
- Be careful:
- Don't gain fuel when going downhill, but go faster
- Don't exceed maximum speed
- Linear search possible too

D - Hill Driving

- Drive through the landscape with constant speed
- (derive for two segments with equations, then use induction)
- Binary search and check how much fuel is used
- Be careful:
- Don't gain fuel when going downhill, but go faster
- Don't exceed maximum speed
- Linear search possible too
- Statistics: 28 submissions, ?? correct, first ?? minutes

I - Telephone Network

- All sets of requests are possible, so we can add dummy
requests to get bipartite graph with $\operatorname{deg}(v)=1$ for all v
- Reduce this graph modulo 2^{n-1} to get a bipartite graph with $\operatorname{deg}(v)=2$ for all v
- Split this graph in two graphs with all degrees 1 and you get two instances of the same problem with $n^{\prime}=n / 2$
- Solve recursively and construct solution

Problem A
Problem H
Problem C
Problem E
Problem B
Problem F
Problem J
Problem G
Problem D
Problem I

I - Telephone Network

- All sets of requests are possible, so we can add dummy
requests to get bipartite graph with $\operatorname{deg}(v)=1$ for all v
- Reduce this graph modulo 2^{n-1} to get a bipartite graph with $\operatorname{deg}(v)=2$ for all v
- Split this graph in two graphs with all degrees 1 and you get two instances of the same problem with $n^{\prime}=n / 2$
- Solve recursively and construct solution
- Statistics: 6 submissions, ?? correct, first ?? minutes

Problem H
Problem C

The end

Problem E
Problem B
Problem F

Problem J
Problem G

Problem D
Problem I

